
MEDI-CAL MIS/DSS 
POLICY/PROCESS 

Policy/Process Section:  Process Documentation 
Policy/Process Title:  Standards  

Version: 1.0 Date: 3/16/01 Page: STD Intro - 1 
 

 
1 Standards (STD) 
 
There are two standards prepared in support of the MIS/DSS MEDSTAT production 
environment.  Both standards have been reviewed by HHSDC and ITSD for conformance 
to existing standards within those environments.  A brief overview of each is presented 
below. 
 
Process 

# 
Process Name Brief Overview 

STD 1 JCL Standards The purpose of standards for Job Control Language (JCL) 
is to promote standardization when accessing the 
mainframe environment and to conform to existing 
standards in place at the HHSDC and ITSD. 

STD 2 COBOL Standards The purpose of COBOL coding standards is to promote 
consistency, readability and ease of maintenance of all 
custom programs designed for the MIS/DSS.  Having this 
standard also helps to ensure that COBOL programs have 
been written in conformance to existing standards in place 
at the HHSDC and ITSD. 

 



MEDI-CAL MIS/DSS 
POLICY/PROCESS 

Policy/Process Section: Adhoc Processes 
Policy/Process Title: JCL Standards 

Version: 1.0 Date: March 16, 2001 Page: STD 2- 1 
 
Table of Contents 
1. Job Control Language (JCL) Standards ................................................................................ 2 

1.1   Overview .......................................................................................................................... 2 
1.2   Purpose............................................................................................................................. 2 
1.3   Scope ................................................................................................................................ 3 
1.4   Responsibility and Enforcement ...................................................................................... 3 
1.5   General Considerations .................................................................................................... 3 
1.6   Skill Requirements ........................................................................................................... 3 
1.7   Entry Criteria.................................................................................................................... 3 
1.8   Procedure Steps................................................................................................................ 4 
1.9   Execution JCL.................................................................................................................. 4 

1.9.1  JOB Statement...................................................................................................... 4 
1.9.2  JOB Name ............................................................................................................ 5 
1.9.3  JOB Class ............................................................................................................. 6 
1.9.4  Message Class ...................................................................................................... 8 
1.9.5 USER Parameter ................................................................................................... 9 

1.10   JCL Procedures (PROCs)............................................................................................... 9 
1.10.1  Design Guidelines .............................................................................................. 9 
1.10.2  JCL Procedure (PROC) Names.......................................................................... 9 
1.10.3  PROC Description.............................................................................................. 9 
1.10.4  EXEC Statement .............................................................................................. 10 
1.10.5  Data Sets in JCL............................................................................................... 11 
1.10.6  DISP Parameter................................................................................................ 12 
1.10.7  Unit (Storage Device) ...................................................................................... 13 
1.10.8  Volume............................................................................................................. 13 
1.10.9  Space Management for Disk Data Sets............................................................ 14 
1.10.10  LABEL........................................................................................................... 15 

1.11   Backup Considerations................................................................................................. 15 
1.11.1  Frequencies ...................................................................................................... 15 
1.11.2  Data Set and Data Base .................................................................................... 15 

1.12   General Considerations ................................................................................................ 16 
1.12.1  Performance Considerations ............................................................................ 16 
1.12.2  Job Design Considerations............................................................................... 17 
1.12.3  Abend Handling ............................................................................................... 17 

1.13   Table 1.13-1 - HHSDC Approved SYSOUT Classes .................................................. 17 
1.14   General Operational Considerations ............................................................................ 18 
1.15   Process Exceptions....................................................................................................... 19 
1.16   Exit Criteria .................................................................................................................. 19 

1.16.1  Exit Exception Criteria..................................................................................... 19 
1.16.2  Exit Exception Handling.................................................................................. 19 

1.17   Reference Material ....................................................................................................... 19 
1.18   Policy History............................................................................................................... 19 

 



MEDI-CAL MIS/DSS 
POLICY/PROCESS 

Policy/Process Section: Adhoc Processes 
Policy/Process Title: JCL Standards 

Version: 1.0 Date: March 16, 2001 Page: STD 2- 2 
 
1.   Job Control Language (JCL) Standards 

1.1   Overview 

The purpose of the JCL Standards document is to promote standardization when accessing the 
mainframe environment.  This includes: 
  

• Confirming that JCL promoted to the Test and Production regions meets environment 
requirements 

• Verifying that technical resource utilization is optimized 
• Assuring that appropriate updates are made to the operations scheduling mechanism 

to minimize resource contention  
• Achieving maximum operational design which minimizes elapsed time of batch jobs 

and systems 
• Assuring that any deviation from the operational standards and guidelines presented 

herein are documented  
 
MEDSTAT is obligated to plan for, install, and run operational systems that meet the demanding 
service levels of the Management Information System/Decision Support System (MIS/DSS) 
Project (“the Project”).  These systems will run on hardware installed specifically for this 
purpose at the Health and Human Services Data Center (HHSDC).  This particular document 
states the recommended methods and guidelines for project JCL, incorporating HHSDC 
standards, as applicable.  The use of standardized job and procedure names, however, will only 
apply to the custom JCL specifically developed for Medi-Cal — all other standards described 
in this document will apply to both custom and core JCL used for the Medi-Cal MIS/DSS 
project.  The document has been compiled to facilitate communication between project database, 
operations, and development staff members, thus improving overall quality of the operational 
environment.  It will also be used to facilitate communication and transitions of responsibility 
between MEDSTAT, HHSDC, DHS and Information Technology Services Division (ITSD) staff 
members.  
 
Appropriate application of these guidelines will enable us to: 
 

• Ensure effective and efficient utilization of technical resources 
• Minimize potential operational errors 
• Reduce migration and operations preparation time frames  
• Promote assimilation of new personnel 

1.2    Purpose  

This document serves as a central document that can be accessed by all developers to 
communicate and enforce common methods and styles of JCL development. This process is 
intended to mitigate production errors by utilizing consistent practices in the development of jobs 
and procedures.  



MEDI-CAL MIS/DSS 
POLICY/PROCESS 

Policy/Process Section: Adhoc Processes 
Policy/Process Title: JCL Standards 

Version: 1.0 Date: March 16, 2001 Page: STD 2- 3 
 
1.3   Scope  

JCL is used to invoke, control, and on occasion, terminate the execution of system and 
application programs.  These guidelines are focused specifically on JCL, JCL-related objects, 
and other related operational components targeted for use in the IBM mainframe environment.  
Although the document is intended for use by all Developers and Database/Operations 
representatives, it does not address specific development and unit test operational issues, such as 
disposition of testing data sets.  
 
The document establishes baseline rules for all components and parameters within the following: 

• JOB statement 
• PROC statement 
• EXEC statement 
• DD statement 
• Data Set Attributes 

 
Additional components and considerations included in this documentation are listed below. 

• Back-up  
• Performance  
• Job design  
• Documentation 
• Software standards 

1.4   Responsibility and Enforcement 

The Development Team Lead is responsible for ensuring that all new jobs and existing job 
modifications conform to these guidelines. 

1.5   General Considerations 

There are no general considerations for this process. 

1.6   Skill Requirements 

The skills required to utilize this process include a mastery of the JCL language sufficient 
enough to be allowed to implement new jobs/procedures into production with peer 
evaluation/review. This level of expertise would likely be obtained after 6 months to 1 year of 
mentored development in an IBM MVS mainframe environment. 

1.7   Entry Criteria 

This process is entered any time a new policy or process needs to be drafted or finalized. 



MEDI-CAL MIS/DSS 
POLICY/PROCESS 

Policy/Process Section: Adhoc Processes 
Policy/Process Title: JCL Standards 

Version: 1.0 Date: March 16, 2001 Page: STD 2- 4 
 
1.8   Procedure Steps 

The following steps will be followed when creating new and modifying existing JCL objects. 
 
JCL Format 
 
All JOB, PROC, EXEC, and DD statements will conform to the format shown in Table 1.8-1.  
Each parameter will be coded on a separate line1. 
 
Table 1.8-1.  JCL Format 

Field Name Description/Contents Column Position 
Identifier Field // 1-2 
Name Field JOBname 

STEPname 
DDname 
 

3-10 

Operations Field DD 
JOB 
EXEC 
 

12-15 
 
 

Parameter Field on JOB and DD statements 
on EXEC statement 

Starts in Column 16 
 
Starts in Column 16 
(IR 1047) 

Comment Field 
or end of JOB 

//* 1-3 

End of Data /* 1-2 
 

Table 1.8-1 
 

1.9   Execution JCL 

 
This section covers creation and maintenance of Execution JCL. 
 
1.9.1    JOB Statement 
 
This section describes the parameters and contents of the execution JCL JOB statement.  It is 
recommended (not required) that all keyword parameters be positioned in alphabetic order.  
Figure 1.9.1-1 shows an example of a correctly coded JOB statement. NOTE: Per the 11/22/99 
E-mail from Don Knifong (ITSD) MEDSTAT should modify the accounting information in 
                                                 
1 The requirement for parameters on separate lines applies specifically to JCL to be delivered to HHSDC and is not enforced at     
the project level. 



MEDI-CAL MIS/DSS 
POLICY/PROCESS 

Policy/Process Section: Adhoc Processes 
Policy/Process Title: JCL Standards 

Version: 1.0 Date: March 16, 2001 Page: STD 2- 5 
 
all production jobs (HMHCP7300P) and development (HMHCP7200T) in order to provide a 
means of identification of MEDSTAT submitted jobs if this system is ever integrated into an 
environment shared by other state resources.   
 
For example: 
 

COLS+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
//JEDIT JOB     (Job Accounting = HMHCP7300P), 
 ‘name’, 

CLASS=A,  
MSGCLASS=J, 
USER=XYZPROG 

 

 
Figure 1.9.1-1 

JOB Statement Example 
 
1.9.2    JOB Name 
 
Job names reflect an easily recognized pattern to allow easy tracking and status display.  To 
promote standardization of production job names, the following conventions will be utilized. 
 
JOB name =“HMxyznnn”  
 
where: 
H  = HHSDC (constant) 
M  = MEDSTAT (constant) 
x  = Product/Application  
y  = Data Source  
z  = Function/Process  
nnn  = Job number frequency (unique job ID) 
 
EXAMPLE:   HMDC310 (see detailed legends below) 
 
H  = JOB created for execution at HHSDC 
M  = MEDSTAT   
D  = DataScan  
C  = Claim Data Source 
3 = Edit Function 
10 = First on-request job in the function series 
 
Product/Applications     
 
D   =  DataScan  
M   =  Performance Measurement Workstation (PMW)  
N   =  Non-Product (MEDSTAT) Specific Application 
P   =  Panorama 



MEDI-CAL MIS/DSS 
POLICY/PROCESS 

Policy/Process Section: Adhoc Processes 
Policy/Process Title: JCL Standards 

Version: 1.0 Date: March 16, 2001 Page: STD 2- 6 
 
U   =  Utility or Third Party Software 
 
Data Source(s) 
 
A         =  All Claims (Drug and Medical)  
C =  Medical Claims (MCLM)  
D         =  Drug Claims (DCLM)  
E         =  Eligibility  
F  =  Managed Care Financials 
M =  Managed Care Capitation 
N =  Managed Care Provider 
V     =  Provider (PMF/PLF) 
 
 
Functions/Processes  
 
0 =  Pre-Convert  
1 =  Convert 
2 =  Install  
3 =  Edit  
4 =  Build 
5 =  Update   
6 =  Rolloff/Delete  
 
 
Frequency   JOB Number Series   
 
Daily     000-099 
Semi- or Tri-weekly   100-149 
Weekly    150-249 
Semi-Monthly    250-299 
Monthly    300-499 
Quarterly    500-549 
Semi-Annual    550-599 
Annual     600-699 
Intermittent/On Request  700-999 
 
Job Numbers should start with ‘010’ and be incremented initially by 10 (010, 020, etc.) to allow 
new jobs to be inserted as required without forcing renumbering of existing jobs.  If it is 
anticipated that the system or application in a particular series will have a large number of unique 
jobs, the initial numbering increment will be 005 (005, 010, 015, etc.)  Any JOBs that cannot 
conform to this criteria will use the number series which most closely matches its required 
frequency. 
 
1.9.3    JOB Class 



MEDI-CAL MIS/DSS 
POLICY/PROCESS 

Policy/Process Section: Adhoc Processes 
Policy/Process Title: JCL Standards 

Version: 1.0 Date: March 16, 2001 Page: STD 2- 7 
 
 
JOB class is a one-character alphanumeric which identifies the job service requirements.  
Specific JOB classes are defined to control the assignment of system resources to each job.  JOB 
classes are automatically assigned by the combination of required CPU time and number of 
required tape drives.   
 
The following table (Table 1.9.3-1) identifies HHSDC approved job classes.  



MEDI-CAL MIS/DSS 
POLICY/PROCESS 

Policy/Process Section: Adhoc Processes 
Policy/Process Title: JCL Standards 

Version: 1.0 Date: March 16, 2001 Page: STD 2- 8 
 
 
 

 REQUIRED RESOURCES 
CLASS CPU TIME 

(MINUTES)  
# TAPE DRIVES QUALIFIERS 

A   Not for MEDSTAT Usage 
B No Limit  Not for MEDSTAT Usage 
C   Not for MEDSTAT Usage 
D No Limit  Not for MEDSTAT Usage 
E   HHSDC Use Only2 
F No Limit  HHSDC Use Only 
G No Limit No Limit JOB submitted by ESP3 
H No Limit No Limit JOB submitted by ESP and has 

a /*WHILE Card 
K N/A N/A HHSDC Use only (EDP007 to 

print spooled data) 
M No Limit  Has a /*WHILE Card4 
P   Not for MEDSTAT Usage 
Q   Not for MEDSTAT Usage 
R   Has a /* WHILE Card 
S N/A N/A HHSDC Software 
X N/A N/A CICS Regions 
Y N/A N/A Production 

 
Table 1.9.3-1 

HHSDC Approved JOB Classes 
 
1.9.4    Message Class 

Message class is a one-character alphanumeric which identifies the job output repository and 
disposition. Figure 1.9.4-1 illustrates the coding of the message class.  Refer to Table 5-5 , 
“Approved SYSOUT Classes” for approved message class values. 
 

COLS+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
//HMJEDIT JOB     (Job Accounting), 
 ‘name’, 

CLASS=1,  
MSGCLASS=J, 
USER=XYZPROG 

 

 
Figure 1.9.4-1 

Message Class Coding Example 
 

                                                 
2 For all items marked “HHSDC Use Only” - At time of publication, these options are not supported on MEDSTAT-S4 
3 ESP is the current automated JOB scheduling system 
4 Confirm with Database Operations prior to using this option 



MEDI-CAL MIS/DSS 
POLICY/PROCESS 

Policy/Process Section: Adhoc Processes 
Policy/Process Title: JCL Standards 

Version: 1.0 Date: March 16, 2001 Page: STD 2- 9 
 
1.9.5    USER Parameter 
 
The USER parameter is hard-coded on the JOB statement and must be included for all scheduled 
jobs. The USER ID controls the security levels for the JOB, and therefore must be defined to the 
system security package.  Project USER IDs adhere to the following format: 
 

• Position 1-2 must contain an “HM” (MEDSTAT) 
• Position 3-7 must contain two to five user-defined characters 

 
USER IDs are assigned by the Database/Operations group. 
 

1.10    JCL Procedures (PROCs) 

 
1.10.1   Design Guidelines 
 
It is recommended that catalogued procedures be used rather than running in-stream submission 
JCL or dynamically created JCL.  Acceptable exceptions are jobs running in the development 
environment while JOB/PROC design are still under operational analysis. 
 
Embedded procedures (PROCs within PROCs) are to be avoided.  If it is necessary that they be 
used, they will be limited to one level deep, and restricted to processes that span applications, 
such as SAS, SORT, and other utilities. 
 
Production processes are limited to the execution of a single application process or function with 
common utilities within an execution JCL.  This will facilitate prompt operational problem 
identification and resolution. 
 
All production application processes must exist in the form of catalogued procedures.  PROCs 
must be designed so that all non-critical processes are executed outside of the critical path 
schedule.  For example, if a step within the procedure is itself not critical, and has no immediate 
successive dependencies, that step must be incorporated into a separate PROC. 
 
1.10.2   JCL Procedure (PROC) Names 
 
All production PROCs will reside in the appropriate procedure library (PROCLIB).  These 
libraries are partitioned data sets (PDS).  Each PROC is a member in the PDS.  The PROC 
member names will be created by the Developer.   
 
1.10.3   PROC Description 
 
It is recommended that a PROC description be initially developed as header/comment 
information within each procedure.  When the procedure is moved into a test or production 



MEDI-CAL MIS/DSS 
POLICY/PROCESS 

Policy/Process Section: Adhoc Processes 
Policy/Process Title: JCL Standards 

Version: 1.0 Date: March 16, 2001 Page: STD 2- 10 
 
environment, the description will communicate to the Database/Operations staff the requirements 
and use of the PROC. 
 
1.10.4   EXEC Statement 
 
The following rules apply when coding the EXEC statement: 
 

• JOB step names must begin with “JS” followed by an ascending three digit number 
indicating the sequential number of the step. 

 
• PROC step names must begin with “PS” followed by an ascending three digit number 

indicating the sequential number of the step. 
 
NOTE:  When numbering steps, leave gaps within the step numbers to allow later insertion of 
steps not initially anticipated.  The size of the gaps must correspond to the number of steps in the 
job. 
 
If a PARM field is required, it must be coded as a continuation on a new line. 
 
If a REGION parameter is required, it must always be coded on the EXEC statement and never 
on the JOB card.  The REGION parameter must be allocated as 0M.  This allows the operating 
system to determine the necessary storage and dynamically allocate the proper amount.  If a 
program requires more than 5120K, consideration must be given to redesigning the program to 
include the use of extended or expanded memory.  Programs of this size may cause serious 
system performance degradation, or contention issues. 
 
Condition Code Logic can be used on the EXEC statement.  Use condition codes to control the 
conditional execution of subsequent steps. 

1.10.4.1   DD Statement 
DD statements must be grouped in the following categories in a catalogued procedure: 
 

• Software dependent data sets (e.g., DB2, CICS libraries, etc.) 
• Databases 
• Input data sets 
• Update “in place” data sets (Input/Output) 
• Temporary work areas 
• Output data sets 
• SYSOUT data sets 
• SYSUDUMP and SYSPRINT statements (compulsory), plus any other installation 

required print statements (such as SYSABEND). 
 
If coded, output DD statements must adhere to the following component/parameter order: 
 



MEDI-CAL MIS/DSS 
POLICY/PROCESS 

Policy/Process Section: Adhoc Processes 
Policy/Process Title: JCL Standards 

Version: 1.0 Date: March 16, 2001 Page: STD 2- 11 
 

• Line 1 - Data Set Name (DSN) 
• Line 2 - Disposition (DISP) 
• Line 3 – DCB parameters (DSORG, RECFM, LRECL, BLKSIZE) 
• Line 4 - UNIT 
• Line 5 - SPACE Allocation (SPACE) 
• Line 6 - Tape Label Information (LABEL) 
• Line 7 - Any remaining keywords 

This practice will assist in expeditious JCL review, problem identification, and problem 
resolution. 
 
1.10.5   Data Sets in JCL 

1.10.5.1   Data Set Naming Conventions 
Data set naming promotes simplification of operational issues. High level qualifiers promote 
rapid identification of the nature of the data set (development, test, production, etc.), as well as 
the security requirements.  This will allow greater flexibility in the security coding rules, and 
simplify security maintenance, as well as support data set recovery rules.  To quickly identify the 
origin of the data set, the data set name will have the JOB and Step number imbedded.   
The approved Data Set Naming practice is: 
 
HLQ.VERSION.RUNQUAL.XXXXXXXX.YYYYYYYY.ZZZZZZZZ  
 
Where:  
 
HLQ =   High Level Qualifier (See List) 
VERSION =   The DataScan version for test jobs or “PMED” for production 
RUNQUAL =  For installation mode (build jobs), the phase of the build (e.g., P31) 
                 For monthly update, mmmyypp (the month, year and phase of the          
                 Update eg. JUN98P3) 
XXXXXXXX =  Data Descriptive or Functional Name (Level 1) 
YYYYYYYY =  Data Descriptive or Functional Name (Level 2) 
ZZZZZZZZ =  Data Descriptive or Functional Name (Level 3) as needed 



MEDI-CAL MIS/DSS 
POLICY/PROCESS 

Policy/Process Section: Adhoc Processes 
Policy/Process Title: JCL Standards 

Version: 1.0 Date: March 16, 2001 Page: STD 2- 12 
 
EXAMPLE: 
 
HM.TMED.V4R01.P33.SORTED.CLAIMS  
 
 

HIGH LEVEL QUALIFIERS DESCRIPTION 
HM.TMED Development Application Libraries 
HM.PMED System/Acceptance/Prod Application Libraries 
HM.MIGR Migration/Staging Libraries 
HM non-Development Data Sets 
Userid TSO Development User IDs and Development Data 

Sets 
SYS1 System Software Libraries 

 
Table 1.10.5-1 

List of High Level Qualifiers 
 
NOTE: VSAM component names will be the same as the internal cluster name with an 
additional Low Level Qualifier (LLQ).  
 
For example: 
 
Cluster Name: HLQ.VERSION.RUNQUAL.[CLUSTERNAME] 
Data Component: HLQ.VERSION.RUNQUAL.[CLUSTERNAME].Data 
Index Component: HLQ.VERSION.RUNQUAL.[CLUSTERNAME].Index 
Alternate Index: HLQ.VERSION.RUNQUAL.[CLUSTERNAME].AIX 
Path:   HLQ.VERSION.RUNQUAL.[CLUSTERNAME].Path 
 
NOTE: The use of aliases is highly discouraged; aliases are not recommended for project 
use. 
 
1.10.6   DISP Parameter 
 
The following rules apply when coding the DISP parameter: 
 

• Catalogue all new data sets, including tape data sets, which are to be kept past the end 
of the creation job.  Data sets not catalogued will be deleted.    

• Code the following for data sets to be catalogued: 
DISP=(New,CATLG,DELETE) 

• Do not code the following for catalogued data sets: 
DISP=(NEW,KEEP) or 
DISP=(NEW,KEEP,KEEP) 

• Temporary data sets are utilized as needed, and exist only for the life of the creation 
step;  all other temporary data sets must be allocated, and treated as permanent data 



MEDI-CAL MIS/DSS 
POLICY/PROCESS 

Policy/Process Section: Adhoc Processes 
Policy/Process Title: JCL Standards 

Version: 1.0 Date: March 16, 2001 Page: STD 2- 13 
 

sets.  These data sets must also be deleted when no longer needed for current 
processing. 

 
1.10.7   Unit (Storage Device) 
 
When creating an output data set, specific device addresses must not be named.  This is to avoid 
specific device dependency. 
 

DEVICE TYPE GENERIC UNIT NAME USAGE 
Tape  
(Cartridge-3490) 

TAPE All in-house tapes and 
external tapes unless 
otherwise requested 

DASD SYSDA Direct Access Devices 
 

Table 1.10.7-1 
Generic Device Names 

 
All tape drives default to the highest of their available densities on output. 
 
The “AFF” parameter will be used when one or more tape or cartridge data sets are being read or 
written consecutively to the same device.  This will prevent more units being allocated than are 
required. 
 
To ensure uniformity of coding in the case of multiple-file backups, the “UNIT=AFF” statement 
must refer to the last data set that was previously backed up. 
 
The “DEFER” parameter must be coded in the following circumstances: 

 
• On input data sets that are allocated but may not necessarily be opened. 
• On output data sets so that a cartridge or tape is only mounted if the program opens the 

file. 
 
It is recommended that three or fewer tape drives be concurrently allocated per job step.  
Allocation of four (or more) tape drives may result in tape allocation problems or job queuing 
problems.  
 
1.10.8   Volume 
To reduce unnecessary mount activity, the “RETAIN” parameter must be coded when passing a 
tape or cartridge data set from one job step to another. 
 
Volume “refer backs” may only be used if they do not impact the restart opportunities of the job. 
 
When backing up multiple data sets to cartridge, the “refer back” must always relate to the 
DDNAME of the previous data set being backed up.  This prevents job failure if the data sets 
expand over more than one volume. 



MEDI-CAL MIS/DSS 
POLICY/PROCESS 

Policy/Process Section: Adhoc Processes 
Policy/Process Title: JCL Standards 

Version: 1.0 Date: March 16, 2001 Page: STD 2- 14 
 
 
Volume serial numbers may only be coded in the JCL for input data sets which are not known to 
the system catalogue, unless an output  data set is to be written to a “stranger tape” (a tape or 
cartridge that is unknown to the current Tape management system). 
 
1.10.9   Space Management for Disk Data Sets 
 
Figure 1.10.9-1 shows an example of how to code the SPACE parameter. 
 
 

COLS+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
//DDSPACE DD  DSN=&&TEMP, 

DISP=(NEW,DELETE), 
 
 
 
 
 
//* 

DSORG=PS, 
RECFM=FB,LRECL=1049, 
BLKSIZE=0, 
UNIT=&Unit, 
SPACE=(200,(100,50),RLSE) 
 

 

 
Figure 1.10.9-1 

SPACE Parameter Coding Example  
 
 
The following guidelines are to be used when creating data sets on Direct Access Sequential 
Devices (DASD). 
 
Physical Sequential Data Sets 
 
Allocate space equivalent to the maximum anticipated size of the production file.  If data set is to 
be updated in place, allow sufficient space for insertions. 
 
Partition Organization 
 
Allocate space requesting megabytes up to a maximum of 100 megabytes.  Specify the 
secondary allocation as 50% of the primary allocation with a maximum of 30 megabytes. 
Specify Directory blocks in multiples of 40 to prevent out of directory errors. 
 
NOTE:  It is not recommended that Partition Organization Extended (POE) be used for 
production data sets.   
 
Direct Access 
 
These files must allocate all needed space upon initial creation, and cannot be larger than 2.3 
gigabytes in size. 
 



MEDI-CAL MIS/DSS 
POLICY/PROCESS 

Policy/Process Section: Adhoc Processes 
Policy/Process Title: JCL Standards 

Version: 1.0 Date: March 16, 2001 Page: STD 2- 15 
 
For VSAM KSDS/ESDS data sets, specify primary space of 1 to 300 Mb, and no secondary 
allocation. 
 
Sort Work Allocations 
 
Allow at least three times the file size for sort work space allocations, with a minimum of three 
sort work DDs.  The size of the sort work space allocations, if too small, may cause detrimental 
performance of the sort.  For very large files, always code the sorted data sets to be catalogued. 
 
1.10.10   LABEL 
 
All tape or cartridge data sets must be created with a standard label.  If the data set is required 
beyond the default retention period (3 days), code Retention Period (RETPD) instead of 
Expiration Date (EXPDT).  If “RETPD” is used, all files on the same tape volume(s) must be 
coded for the same retention period.  “RETPD” is now to be coded as a stand-alone parameter 
and is no longer coded as part of the LABEL parameter.   
 
NOTE:  Developers are responsible for managing their own tape data sets.  The maximum 
retention period for development data sets must not exceed 60 days without explicit 
communication with Database/Operations.  If a retention period of more than 60 days is required, 
a memo must be written to Database/ Operations requesting additional time, and containing 
justification for the extension.  Additional information must include the data set names, the 
amount of time requested, and the contact person who owns the data set.  To facilitate the above 
guidelines, Database/Operations will create and circulate a weekly report from the tape 
management system to the development staff which indicates retention periods about to be 
exhausted. 
 

1.11   Backup Considerations 

1.11.1   Frequencies 
All applications will be reviewed to determine the practical limits on frequency of use and 
recoverability and/or restartability, including the estimated resource usage and associated CPU 
cost balanced against the time/cost incurred during application recovery and/or restart.  Backup 
frequencies must be based on these determinations.  Other factors to consider are the backup 
method, the size of the file(s) involved, the lag time between processing steps, the overall 
operational schedule, and the availability requirement for the file(s) for inter-job dependency and 
contingency purposes. 
 
1.11.2   Data Set and Data Base 

All application sub-systems must contain adequate backups of data sets or data bases to enable 
system recovery, with consideration for cost to the project. 
 



MEDI-CAL MIS/DSS 
POLICY/PROCESS 

Policy/Process Section: Adhoc Processes 
Policy/Process Title: JCL Standards 

Version: 1.0 Date: March 16, 2001 Page: STD 2- 16 
 
Data set backup steps must process outside of the critical production path.  The exception to this 
rule is data sets required for system recovery. 
 
GDG Considerations 
 
The use of GDG files must not impact the re-startability of jobs. Build GDG indices using the 
following IDCAMS statement: 
 
DEFINE GDG(NAME(dsn) SCRATCH NOEMPTY LIMIT(x)) 
 
Where x = maximum number of generation data sets (GDGs) that can be associated with the 
GDG. 
 

1.12   General Considerations 

The use of Generation Data Groups (GDGs) is strongly encouraged to assist in the effective and 
efficient use of technical resources (TAPE and DASD). 
 
The Catalogue index entry for GDG backups must reflect the expected life of the data set for all 
storage media.  If a data set is created on a daily basis and retained for 14 days, then the index 
must be built for 14 generations. 
 
This standard may be applied up to 255 generations, as this is the current limitation.  If more than 
255 generations are required, code the Retention Period to ensure that the data sets are retained 
and available, even though not in the catalogue. 
 
Single currency data sets must not be merged onto a consolidated backup; they must be backed 
up individually. 
 
Backups must be taken of all data sets sent off-site. 
 
1.12.1   Performance Considerations 
Tape sort work files must not be used under any circumstances for this project. 
Single tape data sets are only read once in a job stream.  If multiple reads are required, the data 
set must be copied to disk to support multiple accesses, unless prohibited by resource (size) 
requirement. 
In many cases, the file definition of a VSAM file is critical to performance, and it is therefore 
essential that the definition is thoroughly justified in terms of CISIZE, use of buffers, VSAM file 
type, etc.  Consider the following points: 

• Use VSAM keywords to attain optimum performance.  This will vary from file to file, 
depending on where or how the data set is accessed (sequentially or randomly). 

• When defining a VSAM file, always use the most accurate average record length. 
• When reading a VSAM KSDS file, use the AMP parameter in the JCL “DD” statement. 



MEDI-CAL MIS/DSS 
POLICY/PROCESS 

Policy/Process Section: Adhoc Processes 
Policy/Process Title: JCL Standards 

Version: 1.0 Date: March 16, 2001 Page: STD 2- 17 
 
 
1.12.2   Job Design Considerations 
 
Items included in this section are to be considered when designing all test and production JCL. 
 

1.12.2.1   Ability to Rerun JOBs 
JCL procedures must be written to enable automatic restart from the point of failure.   
 
Any housekeeping or cleanup procedure must be minimized, as by standard, any files to be 
catalogued during execution must have been deleted when no longer needed, and only 
catalogued if the data set is to be kept. 
 
Use an industry standard utility such as IDCAMS or IEFBR14 to delete data sets. 
 
Any program that updates a database must take checkpoints in order to commit and log updates.  
Any program that runs for longer than 30 minutes elapsed time must checkpoint. 
 
The application and job streams must be designed not to include manual intervention during 
execution.  
 
1.12.3   Abend Handling 

Restore JOBs 
Where appropriate, specific restore procedures must be created and documented for VSAM files.  
These procedures will be used when a batch process is not automatically re-runable.  They will 
take corrective actions prior to the resubmission of the original job. 
 
Where appropriate, and with consideration for cost to the production environment, complete 
VSAM file backups prior to application update. 
 
Determine at PROC design time if it is necessary to create a special restore PROC will be 
developed for recovery of any complex process. 
 
Design and code programs to always return a condition code of zero (0) if the program completes 
successfully.  For example, data exceptions will be handled and reported programmatically and 
not by a non-zero condition code.  With the exception of branching requirements, any non-zero 
condition code will denote process failure that must result in execution interruption.  Non-zero 
codes may be required for branching purposes within a job stream.  Use JCL branching logic 
(IF/THEN/ELSE/ENDIF) processing whenever possible.  Refer to the JCL Reference Manual for 
correct format and usage of JCL branching. 

1.13   Table 1.13-1 - HHSDC Approved SYSOUT Classes 
SYSOUT classes are assigned by HHSDC.  The following table illustrates current HHSDC 
values to use for SYSOUT and Message Classes. 



MEDI-CAL MIS/DSS 
POLICY/PROCESS 

Policy/Process Section: Adhoc Processes 
Policy/Process Title: JCL Standards 

Version: 1.0 Date: March 16, 2001 Page: STD 2- 18 
 
 

SYSOUT CLASS TYPE OF FORM DEVICES/USAGE 
   

A Standard5 All Printers 
B Standard Punch 
C Standard  
F Special  
I Standard XEROX 
J FICHE COMUNIT 
K PRINTING AND 

PUNCHING 
REQUIRED 

PUNCH 

O STAPLED AND 
FOLDED 

XEROX 

P Standard (PREFERABLY) 
X HELD6 ALL PRINTERS 
Y HELD7 ALL PRINTERS 

0(zero) CONDITIONAL 
PURGE8 

ALL PRINTERS 

 SPECIAL  
 SPECIAL PUNCH 
 SPECIAL  
 SPECIAL (PREFERABLY) 
 STANDARD  

Table 1.13-1 
Approved Sysout Classes 

 

1.14   General Operational Considerations 

All non-critical processes must be executed outside of the critical path schedule.  The following 
considerations must be taken into account when structuring the schedule.  
 
Recoverability 
Where possible, write recovery procedures to easily recreate files to be sent off-site or to external 
shops.   
Two backup copies are to be taken of files that are required to recover an application system, one 
of which must be sent off-site. 

                                                 
5 Standard printer form is defined as one part (14 7/8” wide by 11” long).  Standard setup is ½” top and left margins.  Standard                                
printer form for the 3820 is for HHSDC use only. 
6 Output defined as CLASS X is automatically held for review through TSO.  All SYSOUTs remaining in hold status after 48 
hours are released at 2300 hours that night.    
7 Output defined as Class Y is automatically held for review through TSO.  All SYSOUTs remaining in hold  for two (2) weeks 
will be deleted at 2300 that night, and will never be printed.  
8 All SYSOUT ‘0’(Zero) classes will be purged after 6 days.  Until then, it will be held in the output queue. 



MEDI-CAL MIS/DSS 
POLICY/PROCESS 

Policy/Process Section: Adhoc Processes 
Policy/Process Title: JCL Standards 

Version: 1.0 Date: March 16, 2001 Page: STD 2- 19 
 
Disaster recovery and security requirements must adhere to audit requirements. 
 
Tape or Cartridge Handling 
All tape or cartridge data sets must be under the control of the Tape management system 
package.  

1.15   Process Exceptions  

Any exceptions to the recommendations in this guideline must be documented in the appropriate 
JCL object (JOB, PROC), and approved by the Development Manager.    

1.16   Exit Criteria 

Agreement by all members of the Core Team effected by the policy/process is required before 
the policy/process is implemented.  Each Core Team member must be prepared to sign-off on the 
policy/process and inform their team members that they will support the implementation and 
enforcement of the content.  
 
1.16.1   Exit Exception Criteria 
By agreement of the Project Director, the format and content of this policy/process may be 
deviated from standard. 

1.16.2   Exit Exception Handling 
The exception must be documented and agreed to by the Project Director. 

1.17   Reference material 

N/A 

1.18   Policy History 

Established/Revision 
Date 

Established/Revised By IR No. Change Description 

11/30/99 JTM 1233 Update section 5.1 to indicate 
that JCL job naming 
conventions will apply only to 
custom JCL developed 
specifically for Medi-Cal and 
not the Core MEDSTAT 
DataScan, PV, nor PMW jobs. 
This change is made to 
eliminate potential confusion 
and unwarranted JCL updates 
that would occur as a result of 
MEDSTAT product upgrades 



MEDI-CAL MIS/DSS 
POLICY/PROCESS 

Policy/Process Section: Adhoc Processes 
Policy/Process Title: JCL Standards 

Version: 1.0 Date: March 16, 2001 Page: STD 2- 20 
 

(MEDSTAT Ann Arbor does 
not use Medi-Cal custom JCL 
naming standards). In addition, 
account code information will 
be standardized per HHSDC 
direction. 

10/15/98 JTM 1047 Alter job number schema, start 
position in EXEC statement 

8/18/98 Joe D 1047 Job naming convention, allow 
0M for region, etc. 

 



MEDI-CAL MIS/DSS 
POLICY/PROCESS #: 1 

Policy/Process Section: Standards 
Policy/Process Title: COBOL Coding 

Version: 1.0 Date: March 16, 2001 Page: STD 1- 1 
 
Table of Contents 
 
1. COBOL Coding Standards ...................................................................................................... 2 

1.1 Overview ............................................................................................................................ 2 
1.2 Purpose............................................................................................................................... 2 
1.3 Scope .................................................................................................................................. 2 
1.4 Responsibility and Enforcement ........................................................................................ 2 
1.5 General Considerations ...................................................................................................... 3 
1.6 Skill Requirements ............................................................................................................. 4 
1.7 Entry Criteria...................................................................................................................... 4 
1.8 Procedure Steps.................................................................................................................. 5 

1.8.1 COBOL Coding Standards and Procedures .......................................................... 5 
1.9 Exit Criteria ...................................................................................................................... 18 

1.9.1 Exit Exception Criteria........................................................................................ 18 
1.9.2 Exit Exception Handling..................................................................................... 18 

1.10 Forms and Subject Examples ......................................................................................... 18 
1.11 Reference Material ......................................................................................................... 18 
1.12 Policy History................................................................................................................. 18 

 



MEDI-CAL MIS/DSS 
POLICY/PROCESS #: 1 

Policy/Process Section: Standards 
Policy/Process Title: COBOL Coding 

Version: 1.0 Date: March 16, 2001 Page: STD 1- 2 
 
1.   COBOL Coding Standards   
 

1.1   Overview 

The purpose of the COBOL Coding Standards section is to promote consistency and reliability in 
the development and maintenance of COBOL programs by collecting and publishing all rules in 
a single location.  

1.2    Purpose  

The purpose of the COBOL Coding Standards is to promote consistency, readability, 
extendibility, and ease of maintenance to all custom programs designed for the Management 
Information System/Decision Support System (MIS/DSS) Project (“the Project”). 
 
Appropriate application of these Standards will assist in: 
 

• Minimizing potential coding errors 
• Ensuring effective and efficient utilization of technical resources 
• Increasing individual and Developer team productivity  
• Promoting assimilation of new personnel 

 
These standards reflect a compilation of programming standards from The MEDSTAT Group, 
Department of Health Services (DHS), and the Information Technology Services Division 
(ITSD).  The programs subjected to these standards for compliance are targeted for delivery to 
the Department, and may (eventually) be maintained by the Department staff. 

1.3   Scope  

This document will be used by any project team member responsible for developing COBOL 
programs used on the Project. 
 
This standard addresses the procedural design of programs as well as actual COBOL Coding 
requirements. 

1.4   Responsibility and Enforcement 

Responsibility for reviewing and updating the COBOL Coding Standard and enforcement of the 
Standard across all Developers is the responsibility of the Development Manager.  The actual 
evaluation of compliance of a given program may be delegated. 
 
Developers are responsible for creating new and modifying existing code for COBOL conversion 
and custom programs.  The Developers provide, where required, customized programs for 
specialized jobs to be executed in the test and production environments.  They are also 



MEDI-CAL MIS/DSS 
POLICY/PROCESS #: 1 

Policy/Process Section: Standards 
Policy/Process Title: COBOL Coding 

Version: 1.0 Date: March 16, 2001 Page: STD 1- 3 
 
responsible for promoting programs and other program-related components from the 
development libraries to the migration libraries. 
 
The Database/Operations staff is responsible for ensuring that the appropriate promotions have 
occurred from the migration library to the test library, and from test to production.   
 
Programs will be reviewed for compliance to this guideline at the time of the code walk-through.  
Programs not in compliance and where compliance exceptions have not been satisfactorily 
documented must be modified and re-submitted. 

1.5   General Considerations 

The strategy presented here intends to lead to a design model for conversion programming.  Our 
strategy will promote quality and consistency throughout the programming process.  To 
accomplish this, we encourage the use of structured programming techniques, and 
standardization of programming practices. 
 
Structured programming is defined as the practice of constructing software according to a 
procedural architecture using a series of logical constructs.  A program coded according to 
structured programming techniques usually incorporates the following elements:   
 

• Top down design (hierarchical architecture) 
• Controlled architecture (“Main-line” driver) 
• Use of functional modules (functional paragraphs or sub-programs) 
• Single entry and single exit points 
• Common, re-useable routines 
• Use of logical constructs (hierarchy, sequence, alternation, and repetition) 
• Limited use of unconditional program transfers (e.g., no GO TO statements) 

 
Use of structured programming promotes ease of maintainability and extendability to all 
programs.  The structured constructs also limit the procedural design of programs and modules to 
a small number of predictable operations, which aid in defining and executing unit and string 
tests. 
 
The use of a limited number of logical constructs also contributes to a human understanding 
process.  The logical “chunks”  allow a reader to recognize procedural elements of a module 
rather than reading the code line by line.  Understanding is enhanced when readily recognizable 
logical forms are encountered, thereby increasing the self-documenting properties of the code.   
 
This blueprint for software construction forms the basis for all conversion and custom developed 
code. 



MEDI-CAL MIS/DSS 
POLICY/PROCESS #: 1 

Policy/Process Section: Standards 
Policy/Process Title: COBOL Coding 

Version: 1.0 Date: March 16, 2001 Page: STD 1- 4 
 
1.6   Skill Requirements 

Developers creating code for use on this project should be familiar with the concepts of 
structured program development. 

1.7   Entry Criteria 

This process is entered any time a project COBOL component is created or altered. 



MEDI-CAL MIS/DSS 
POLICY/PROCESS #: 1 

Policy/Process Section: Standards 
Policy/Process Title: COBOL Coding 

Version: 1.0 Date: March 16, 2001 Page: STD 1- 5 
 
1.8   Procedure Steps 

The following steps outline the development process request and authorization to program.  
• Investigation Request (IR) is generated 
• Change Control process reviews for priority and scheduling 
• Assignment(s) made to Data Manager and Developer 
• Data Manager and/or Developer perform analysis 
• Data Manager develops design specification 
• Data Manager and Developer participate in design walk-through to ensure consistent 

understanding of requirements 
• Developer makes changes, as needed 
• Developer performs unit test 
• Developer and Data Manager participate in code walk-through 
• Developer reviews unit test with Data Manager/Lead Developer 
• Lead Developer authorizes migration 
• Developer migrates affected programs and related objects 

 
The Developers will utilize the guidelines presented in this document whenever they generate 
and/or modify COBOL program code. 
 
1.8.1   COBOL Coding Standards and Procedures 
 
General  Coding Guidelines 
 

• Use EJECTs, SKIPs, and blank lines to improve program readability. 
 

• Use indentation and align vertical columns to enhance readability and show 
relationships. 

1.8.1.1   Identification Division 

 
The first division of all COBOL programs is used to identify the program and to provide a high 
level overview of the program’s history. 
 
PROGRAM NAME 
The format of the program name is MPDFnnn where: 
M = MEDSTAT conversion program (constant) 
P = Product 
D = Data Sources 
F = Function/Process 
nnn = Sequence numbers (preferably in increments of 5) 

 
Product: 
D = DataScan   



MEDI-CAL MIS/DSS 
POLICY/PROCESS #: 1 

Policy/Process Section: Standards 
Policy/Process Title: COBOL Coding 

Version: 1.0 Date: March 16, 2001 Page: STD 1- 6 
 
M = Performance Measurement Workstation (PMW )  
P = Panorama  
U = Utility  

 
Data Sources: 
C = Medical Claims (MCLM)   
D = Drug Claims (DCLM)  
E = Eligibility   
M = Managed Care and Capitation 
V = Provider  

 
Function/Process: 
0 = Pre-Convert 
1 = Convert  
2 = Install   
3 = Edit  
4 = Build   
5 = Update  
6 = Rolloff/Delete 
  
Example: 
 
MDD501 = First program used in the DataScan Drug Claims Update Process 

 
The responsible Developer assigns the program number. 
 
COMMENTS
 
Informational comments must be placed at the end of the Identification Division in a 
maintenance log.  Following is an example of the maintenance log.   
        
 
Modification  
Date 

IR 
Number 

Developer  
Name 

Modification 
Description 

97/09/15  999 Ron Howard Modify drop conditions to 
keep and process eligibility 
records from Solano, San 
Mateo, and San Bernadino 
counties.  

97/03/27  923 Suzy Smith Added conversion map 
“AIDCODE” to be loaded to 
internal table; removed hard 
code.   
  

 



MEDI-CAL MIS/DSS 
POLICY/PROCESS #: 1 

Policy/Process Section: Standards 
Policy/Process Title: COBOL Coding 

Version: 1.0 Date: March 16, 2001 Page: STD 1- 7 
 
Upon subsequent program revisions, the comments in the maintenance log must be revised and 
kept current.  Additional comments (referencing the specific IR number) will be used throughout 
the program to clarify more complex routines.  
  
PROGRAM DESCRIPTION 
 
The program description must give a high level overview of the program’s purpose (i.e., identify 
the main function of the program), and any special processing considerations.    
 
Program revisions must be recorded in an orderly fashion and listed by date (most recent listed 
first) with a brief description of the purpose, and changes made.  Include Investigation Request 
(IR) number, data of revision, and Developer Name.   



MEDI-CAL MIS/DSS 
POLICY/PROCESS #: 1 

Policy/Process Section: Standards 
Policy/Process Title: COBOL Coding 

Version: 1.0 Date: March 16, 2001 Page: STD 1- 8 
 
1.8.1.2   Environment Division 
 
INPUT-OUTPUT SECTION
 
DDNAMES must reflect file content to the extent possible with an 8 character limit.  For 
example:  

 
FILE DDNAME 

VITAL STATISTICS SUMMARY REPORT SMRYRPT 
VITAL STATISTICS BIRTH MASTER INPUT MASTIN 
VITAL STATISTICS BIRTH MASTER OUTPUT  MASTOUT 

 
 

1.8.1.3   Data Division 

GENERAL
 
The primary goal in organizing and coding data storage areas is to make it as easy as possible to 
locate data fields. The following rules apply to both the FILE SECTION and WORKING-
STORAGE. 

 
• Keep it readable: 
 

◊ Code one data name per line and indent each level of an ‘01’ data description by 3-5 
characters.  Use blank lines to set off related groups of fields. 

 
◊ Start PICTURE values in the same column for ease of counting byte positions.  For 

consistency, column 48 is recommended. 
 
◊ Ensure that PICTURE value formats are consistent for ease of counting byte positions.   
 

For example: 
  

 01 XXXXX. 
 05  XXXXX              PIC  X(023). 
 05  XXXXXXXX             PIC  X(002). 
 05  XXXXXXX             PIC  X(123). 
 
 01 XXXXXXXXXXX. 
 05  XXXXX. 
 10  XXXXX    PIC  X(004). 
 10  XXX               PIC  X(005). 
 
Instead of: 



MEDI-CAL MIS/DSS 
POLICY/PROCESS #: 1 

Policy/Process Section: Standards 
Policy/Process Title: COBOL Coding 

Version: 1.0 Date: March 16, 2001 Page: STD 1- 9 
 

  
 01 XXXXX. 
 05 XXXXX  PIC  X(23). 
 05 XXXXXXXX  PIC  X(2). 
 05 XXXXXXX  PIC  X(123). 
 01 XXXXXXXXXXX. 
 05 XXXXX. 
 10 XXXXX  PIC  X(4). 
 10 XXX  PIC  X(5). 

    
 

• Label modified code 
 
If possible, identify code that was added or modified as a result of a program revision.  Include the IR 
number so that it is possible to trace code back to the revision authorization. 

 
 

WORKING-STORAGE SECTION 
 
Organized and consistent presentation of working storage aids in researching and debugging 
production problems and assists in the modification of programs.  It is recommended that this 
section be structured as follows: 
 
• Have certain fields towards the top of WORKING-STORAGE to aid in reading dumps if a 

program terminates abnormally.  For this reason the counters (input and output balancing 
counts followed by other counters), sequence or match keys, and tables appear at the 
beginning of WORKING-STORAGE. 

 
• The second half of WORKING-STORAGE contains the record descriptions, detail lines and 

headers, miscellaneous fields, and abend-related fields.  It is easier to modify and follow a 
program when data that are logically related or used for a similar purpose are grouped and 
presented in a familiar order.  Thus, I/O fields or records are grouped together, print lines are 
grouped by report and are contiguous, etc. 

 
Working-Storage Groups 
 

• Use the literal constant ‘WORKING STORAGE STARTS HERE’ as the first 
statement in the WORKING-STORAGE section. The use of this literal will 
enable the trouble shooter to locate the beginning of the WORKING-
STORAGE section in a core dump. 

 
• Counters must follow the WORKING-STORAGE literal.  Counters are 

defined as accumulators.  The first counter(s) will be the total records read 
counter.  This enables the trouble shooter to determine which record in the 
input file actually caused the problem.  Other counters that may prove useful 



MEDI-CAL MIS/DSS 
POLICY/PROCESS #: 1 

Policy/Process Section: Standards 
Policy/Process Title: COBOL Coding 

Version: 1.0 Date: March 16, 2001 Page: STD 1- 10 
 

to the programmer are records 'written' counter (this will help if the problem 
occurs in the output of the record), and records ‘dropped’ counter (if records 
are actually bypassed in the program). 

 
• All working storage data elements must be organized so that like data 

elements are easier to find.  When grouping “like” data elements, include a 
comment in the program identifying the type of data elements found in that 
group. 

 
Field Formats 
 

• Using PACKED-DECIMAL Fields 
 

The machine stores PACKED-DECIMAL/COMP-3 fields in such a way that includes the 
sign in the lower order half byte.  Therefore, a packed field that is defined with 6 digits and a 
packed field that is defined with 7 digits will both use 4 bytes in the machine.  Inefficiencies 
may be introduced when an even number of digits are defined.  That is why an odd number 
of bytes is highly recommended.  A couple of examples follow: 

 
INPUT-RECORD-READ PICS  9(07)  COMP-3 
DOLLAR-AMOUNT-PAID PICS  9(09)V99 PACKED-DECIMAL. 
 

ITSD recommends the use of PACKED-DECIMAL rather than COMP-3 in coding.  
Although they provide the same function, the PACKED-DECIMAL is more descriptive. 

 
• BINARY Fields  

 
COMPUTATIONAL or BINARY fields are allocated by the system as either 2-byte or 4-
byte fields, depending upon the number of digits in the PICTURE clause.  Defining 1-4 digits 
results in a 2-byte field.  Defining 5-9 digits results in a 4-byte field.  In order to avoid 
possible truncation of significant digits, always define binary fields with either 4 or 9 digits.  
(It is possible to define a binary field that is 8 bytes long.  However, the CPU cannot directly 
work with such a field and great inefficiencies are introduced).  

 
ITSD recommends the use of BINARY rather than COMP in coding.  Although they provide 
the same function, BINARY is more descriptive. 

 
• Synchronized Fields 

 
Use of synchronized fields (SYNC) is highly discouraged.  SYNC causes the data element to 
start on a half-word or full-word boundary.  This used to be required for binary fields, but is 
no longer needed. 
 



MEDI-CAL MIS/DSS 
POLICY/PROCESS #: 1 

Policy/Process Section: Standards 
Policy/Process Title: COBOL Coding 

Version: 1.0 Date: March 16, 2001 Page: STD 1- 11 
 
Other Working-Storage Considerations 
 

• Create group level (01 level) data names that will identify the function of data 
contained in the subsequent statements.  For example: 

 
     01 COUNTERS. 
      05 CLIENT-REC-READ-CNT 
      05 CLIENT-MST-REC-WRITTEN-CNT 
      05 GOOD-EDIT-REC-CNT 
      05 CLIENT-REC-BYPASSED-CNT 
 
     01 SWITCHES. 
      05 TRANS-EOF-SW 
      05 MAST-EOF-SW 
 
     01 ERROR-DETAIL-LINE. 
      05 FILLER             PIC  X(002)  
            VALUE SPACES. 
      05 ERROR-TRANS-CODE PIC  X(001). 
      05 ERROR-BATCH-NUM   PIC  X(023). 
 
     01 ERROR-REPORT-HEADER. 
      05 FILLER             PIC  X(011)  
            VALUE  ‘ RUN DATE: ‘ 
      05 HL-RUN-DATE            PIC  X(008). 
      05 FILLER             PIC  X(033)  
            VALUE SPACES. 
      05 FILLER             PIC  X(029)  VALUE 
       ‘DEPARTMENT OF HEALTH SERVICES’. 
 

• Identify the logical levels of tables and their indices with comments.  If 
applicable, give a general explanation of table load/unload logic, especially 
conversion maps.   

1.8.1.4   Procedure Division 

Program Architecture 
 
Structured programming is usually defined as containing the following elements:  

 
• Top down design 
• Functional modules 
• Use of basic program structures (hierarchy, sequence, alternation, and repetition) 
• Minimal or no use of GO TO or other unconditional  transfer statements.  

 



MEDI-CAL MIS/DSS 
POLICY/PROCESS #: 1 

Policy/Process Section: Standards 
Policy/Process Title: COBOL Coding 

Version: 1.0 Date: March 16, 2001 Page: STD 1- 12 
 
Other features of a structured program include single entry and exit points for procedures, use of 
common routines to reduce redundancy, and statement indentation to improve readability. 
 
Top down design is design that proceeds from the general to the specific in an ordered hierarchy.  
Major processes are identified and broken down into successively smaller functional units.  The 
overall flow of the program must be discernible from the main logic or higher order procedures. 
 
Functional modules are paragraphs that are usually devoted to a single function and have a 
limited purpose (e.g. to build an output record, search a table, etc.). 
 
The basic programming structures have been defined as: 
 

• Hierarchy — program code proceeds from the general to the specific according to 
function 

 
• Sequence — statements are executed in a predetermined sequence (i.e., top to 

bottom).  Sequence implements processing steps that are essential in the 
specification of algorithms. 

 
• Alternation — (i.e., IF-THEN-ELSE, EVALUATE) conditional execution of 

statements, paragraphs or sections.  Provides the facility for selected processing 
based on some logical occurrence.  

 
• Repetition — conditional iteration of paragraphs or sections (e.g., PERFORM 

UNTIL statements).  Manages controlled looping. 
 

Do not use “GO TO” or other unconditional transfer statements.  Unconditional transfer 
statements are not supported by structured programming techniques.  If not used properly, they 
can cause multiple exits from paragraphs (since there is no provision for a return to the next 
statement after the “GO TO”).  Also, “GO TO” logic is difficult to follow when performing 
program maintenance. 
 
Avoid use of the PERFORM THRU construct for the same reasons as mentioned above.   

Standard Paragraph Names 

 
The standard paragraph name is constructed in the following format: 

 
 9999-PARAGRAPH-ID. 
 

9999 = a four-digit number which is in ascending sequence from the beginning of the program.  
Where program complexity allows, number the paragraphs by 100's, to reserve the additional 
numbers for a new paragraph to be inserted in their logical place when the program is modified. 
 



MEDI-CAL MIS/DSS 
POLICY/PROCESS #: 1 

Policy/Process Section: Standards 
Policy/Process Title: COBOL Coding 

Version: 1.0 Date: March 16, 2001 Page: STD 1- 13 
 
For example: 

 
 1000-INITIALIZATION. 
 1100-EDIT-PARAMETER. 
 1200-LOAD-COUNTY-TABLE. 
 1300-EMPTY-MASTER-CHECK. 

 
PARAGRAPH-ID is constructed of a character string containing up to twenty-five (25) 
characters, including hyphens.  The paragraph-ID identifies what major activity or function takes 
place in the particular paragraph.  When numbering the paragraphs in a program, it is very 
helpful to keep all of the paragraphs that are related within a major numbering grouping.  
Utilizing the correct numbering format will enable a trouble-shooter to follow the flow of data 
through the program.  

 
An example of the numbering scheme follows: 
 
 PROCEDURE DIVISION 
 
 0000-MAIN-DRIVER. 
  PERFORM 1000-INITIALIZE. 
  PERFORM 4000-PROCESS-DATA UNTIL END-OF-FILE. 
  PERFORM 9000-DISPLAY-CONTROL-TOTALS. 
  GOBACK. 
 
 1000-INITIALIZE. 
  DISPLAY  '**********  MDPU500   **********'. 
  DISPLAY SPACE. 
  OPEN   INPUT  INPUT-FILE 
          OUTPUT  OUTPUT-FILE. 
  PERFORM 2000-READ-INPUT-FILE. 
 
 2000-READ-INPUT-FILE. 
  READ  INPUT-FILE 
   INTO INPUT-RECORD 
   AT END 
    SET  INPUT-EOF TO TRUE 
  END-READ. 
  IF  INPUT- EOF 
   CONTINUE   (preferred usage is 
          CONTINUE',     
        not 'NEXT SEQUENCE') 
  ELSE  
   ADD +1 RECORDS-READ-CNT 
  END-IF. 
 



MEDI-CAL MIS/DSS 
POLICY/PROCESS #: 1 

Policy/Process Section: Standards 
Policy/Process Title: COBOL Coding 

Version: 1.0 Date: March 16, 2001 Page: STD 1- 14 
 

 4000-PROCESS-DATA. 
  PERFORM 4100-PROCESS-RECORD. 
  PERFORM 2000-READ-INPUT-FILE. 
 
 4100-PROCESS-RECORD. 
  MOVE INPUT-RECORD TO OUTPUT-RECORD. 
  PERFORM 4200-WRITE-OUTPUT-RECORD. 
  
 4200-WRITE-OUTPUT-RECORD. 
  WRITE OUTPUT-RECORD. 
  ADD +1 TO RECORDS-WRITTEN-CNT. 
 
 9000-DISPLAY-CONTROL-TOTALS. 
  DISPLAY 'RECORDS READ   =  '  RECORDS-READ-CNT. 
  DISPLAY 'RECORDS WRITTEN  =  '  RECORDS-WRITTEN-CNT. 
  CLOSE  INPUT-FILE 
    OUTPUT-FILE. 
 
 

1.8.1.5   Additional Comments  

Use of Case Statements 
 
Use “EVALUATE” rather than “IF-THEN-ELSE” constructs to manage complex logic. 

Moderate Paragraph Lengths 
 
Maintain a single function per paragraph.  Long paragraphs usually perform more than one 
logical function.  Shorter, logical functions improve future understanding, maintenance and 
enhancement of programs.  The general rule is to avoid paragraphs longer than one page. When 
long paragraphs are unavoidable, ensure adequate comments to assist in simplification of the 
code.  

Readability 
Code one verb or phrase per line.  Indent each sub-phrase at a lower hierarchy by three to four 
characters. 
 

For example: 
 
 READ TRANS-FILE INTO TRANS-RECORD 
    AT END SET TRANS-EOF TO TRUE 
 END-READ. 
 



MEDI-CAL MIS/DSS 
POLICY/PROCESS #: 1 

Policy/Process Section: Standards 
Policy/Process Title: COBOL Coding 

Version: 1.0 Date: March 16, 2001 Page: STD 1- 15 
 

Instead of: 
 
 READ TRANS-FILE INTO TRANS-RECORD 
     AT END SET TRANS-EOF TO TRUE. 
 
• Make use of the verb delimiters (end-if, end-perform, etc.) especially on verbs 

that can use other verbs in sub-phrases such as IF, EVALUATE and READ.  
This also helps to avoid logic errors caused by missing periods. 

 
• Group like code when appropriate.  For example, in a print routine, group the 

WRITE statements using blank lines to separate the WRITE statements from 
the print heading check routine. 

 
• In a paragraph with a loop process, if there is not a separate BEGIN, BODY, 

and END paragraph, identify with comments each separate process within the 
one paragraph.  This condition exists when there are not enough statements to 
separate the BEGIN and END process into paragraphs and the BODY may be 
an IN-LINE PERFORM. 

 

Use Of Relational Operators  

• Promote use of positive logic flow.  Avoid negative logic using the word 
“NOT”, unless it is simple and easily understood.  If there is a clear positive 
method of expressing the condition, the positive condition is always preferred.  
Negative logic is sometimes difficult to understand and difficult to debug.  
This is especially true in complex situations. 



MEDI-CAL MIS/DSS 
POLICY/PROCESS #: 1 

Policy/Process Section: Standards 
Policy/Process Title: COBOL Coding 

Version: 1.0 Date: March 16, 2001 Page: STD 1- 16 
 
 

• Complex compound conditions are also discouraged if there is a reasonable 
alternative. 

 
Example #1: 
 
 Poor Coding: IF A NOT <  B 
      PERFORM 1234-PROCESS 
     END-IF. 
 
 Preferred:  IF  A >=  B 
      PERFORM 1234-PROCESS 
     END-IF. 
 
Example #2: 
 
 Poor Coding: IF A = B OR A NOT <  C AND C =  D 
      PERFORM 1234-PROCESS 
     END-IF. 
 
 
 Preferred:  IF A = B 
           PERFORM 1234-PROCESS 
         ELSE 
              IF A  >= C  and C = D 
                   PERFORM 1234-PROCESS 

              END-IF 
         END-IF 

Common Coding Issues 

• Set or increment counters after the event has occurred for consistency.  If an abend 
results in a core dump, it is easier to interpret the meaning of the counters if all 
Developers use a standard position for incrementing the counts. 

• In editing situations, move data after it has been edited within the same module, 
unless it is part of a separate move paragraph. 

Program Accountability 
• Use DDname “CNTLRPT” for all balancing and control reporting.  Avoid use of 

“DISPLAY” in production programming. 
• Print meaningful end-of-job counts at the end of processing.  Record counts will be 

reported for all input and output files (not necessarily reports) if they are processed 
sequentially. 



MEDI-CAL MIS/DSS 
POLICY/PROCESS #: 1 

Policy/Process Section: Standards 
Policy/Process Title: COBOL Coding 

Version: 1.0 Date: March 16, 2001 Page: STD 1- 17 
 

• Print a complete accounting of update activities (transactions rejected, records added, 
records changed, records deleted, etc.), if one or more files are updated, so that all 
output can be reconciled to the input counts. 

• Print balancing accumulators for NORMAL program termination.  Code all balancing 
instructions that provide indicators to evaluate problematic processing, plus a 
message indicating that the counts balance or do not balance. 

• Report meaningful abnormal termination messages before the control totals.  The 
message must be descriptive and provide enough information to assist in problem 
resolution. 

• If a program ends by detecting an abnormal or error condition, the program must print 
all termination messages, all control totals, establish appropriate condition return 
code, then call “CSBERROR” (see Conversion Programming Guide). 

 
For COBOL programs, use return codes to indicate severity level of problems encountered: 
   0 = No errors; continue processing 
   4 = Informational 
   8 = Warning 
   12 = Severe 
   16 = Critical 
 
These codes may be used to handle conditional branching in job execution.   
 
Recommended Usage of Sub-scripts and Indices 
 
Sub-scripting and indexing are excellent tools for table handling, and must be used thoughtfully.  
Consider the following points: 
 

• Indexing is more efficient than sub-scripting for table searches or when the 
same index is used several times relative to the number of times its value 
changes. 

• Use an index to reference only the table in which it is defined.  In terms of 
sub-scripting, do not use the same subscript for referencing different tables or 
data names unless the subscript is used to access both fields or tables in the 
same process with the same value.  Avoid using the same subscript in 
unrelated parts of the program.   

• Sub-scripting is useful when an existing data field contains the exact value 
needed to identify the correct location in the table.  For example, if county 19 
is always in the 19th table location you can use the county code from an input 
record as the subscript.  It is also easier to use subscripts when doing 
coordinated processing of two or more tables and the same subscript values 
are used to access all of the tables. 

• For files with detail segments or for table items referenced several times in the 
same logic loop, it is better to move the segment or table item desired into a 
WORKING-STORAGE area and to reference the individual data elements 



MEDI-CAL MIS/DSS 
POLICY/PROCESS #: 1 

Policy/Process Section: Standards 
Policy/Process Title: COBOL Coding 

Version: 1.0 Date: March 16, 2001 Page: STD 1- 18 
 

from there, rather than using subscripts or indexes to access each data field 
individually in the table.  This method is more efficient and easier to follow. 

• Give the subscript/index meaningful data names, such as 'AID-CODE-SUB' 
or 'COUNTY-TABLE-IDX'. 

• Specify 'BINARY' and 'SIGNED' in the picture clause of subscripts.  
Conversion to BINARY will occur when BINARY is not specified.  
Designating the BINARY field as 'SIGNED' saves an extra instruction.  For 
unsigned BINARY fields, an extra instruction is required to remove the sign 
whenever the value is changed. 

1.9   Exit Criteria 

Agreement by all members of the Core Team effected by the policy/process is required before 
the policy/process is implemented.  Each Core Team member must be prepared to sign-off on the 
policy/process and inform their team members that they will support the implementation and 
enforcement of the content.  
 
1.9.1   Exit Exception Criteria 
If an applicable program cannot comply with a Standard in this section, the issue must be 
documented in the program code, and in the program design documentation.  These items are 
presented at code walk-through where alternatives may be presented.  All remaining exceptions 
must be approved by the Project Development Manager. 
 
1.9.2   Exit Exception Handling 
The exception must be documented and agreed to by the Project Development Manager. 

1.10   Forms and Subject Examples 

N/A 

1.11   Reference Material 

 
The following materials may be used for reference purposes to add clarity to any Standard or 
process outlined in this document, or as required by the Developer. 
 
COBOL II Reference Manual 
JCL Reference Manaual 
SyncSort Reference Manual 
JCL Standards 
MEDSTAT Conversion Programming Manual 

1.12   Policy History 



MEDI-CAL MIS/DSS 
POLICY/PROCESS #: 1 

Policy/Process Section: Standards 
Policy/Process Title: COBOL Coding 

Version: 1.0 Date: March 16, 2001 Page: STD 1- 19 
 
Established/Revision Date Established/Revised By Change Description 
4/3/2000 John Mulcahy Revised to new format, added 

clarifying information to some 
sections 

8/1/98 Barbera Bridgewater Policy/Process Established 
 


	Standards (STD)
	2_JCL Standards.pdf
	Job Control Language (JCL) Standards
	Overview
	Purpose
	Scope
	Responsibility and Enforcement
	General Considerations
	Skill Requirements
	Entry Criteria
	Procedure Steps
	Execution JCL
	JOB Statement
	JOB Name
	JOB Class
	Message Class
	USER Parameter

	JCL Procedures (PROCs)
	Design Guidelines
	JCL Procedure (PROC) Names
	PROC Description
	EXEC Statement
	DD Statement

	Data Sets in JCL
	Data Set Naming Conventions

	DISP Parameter
	Unit (Storage Device)
	Volume
	Space Management for Disk Data Sets
	LABEL

	Backup Considerations
	Frequencies
	Data Set and Data Base

	General Considerations
	Performance Considerations
	Job Design Considerations
	Ability to Rerun JOBs

	Abend Handling

	Table 1.13-1 - HHSDC Approved SYSOUT Classes
	General Operational Considerations
	Process Exceptions
	Exit Criteria
	Exit Exception Criteria
	Exit Exception Handling

	Reference material
	Policy History


	3_COBOL Standards.pdf
	COBOL Coding Standards
	Overview
	Purpose
	Scope
	Responsibility and Enforcement
	General Considerations
	Skill Requirements
	Entry Criteria
	Procedure Steps
	COBOL Coding Standards and Procedures
	Identification Division
	Environment Division
	Data Division
	Procedure Division
	Standard Paragraph Names
	Additional Comments
	Moderate Paragraph Lengths
	Readability
	Use Of Relational Operators
	END-IF

	Common Coding Issues


	Exit Criteria
	Exit Exception Criteria
	Exit Exception Handling

	Forms and Subject Examples
	Reference Material
	Policy History



